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Homework 2.1 (A convergence criterion). Let 𝐷 ⊂ C be a domain and let ( 𝑓𝑛)𝑛∈N be a
locally uniformly bounded sequence of holomorphic functions 𝑓𝑛 : 𝐷 → C. Assume there
exists 𝑧0 ∈ 𝐷 such that for every 𝑘 ∈ N0, the following limit exists:

lim
𝑛→∞

𝑓
(𝑘 )
𝑛 (𝑧0).

a. With elementary methods from analysis, show the following “lemma”. Let (𝑧𝑛)𝑛∈N
be a sequence in C and let 𝑧 ∈ C. Then (𝑧𝑛)𝑛∈N converges to 𝑧 if and only if every
subsequence of (𝑧𝑛)𝑛∈N has a further subsequence which converges to 𝑧1. Can one
replace the second condition by “(𝑧𝑛)𝑛∈N has a subsequence converging to 𝑧”?

b. Use a. to show ( 𝑓𝑛)𝑛∈N converges locally uniformly to some function 𝑓 : 𝐷 → C2.

Solution. a. It is clear that if (𝑧𝑛)𝑛∈N converges to 𝑧, then every subsequence (of every
subsequence) of (𝑧𝑛)𝑛∈N converges to 𝑧.

Conversely, assume (𝑧𝑛)𝑛∈N does not converge to 𝑧. Then (by reversing the definition of
convergence logically) there exists 𝜀 > 0 such that for every 𝑁 ∈ N there exists 𝑛𝑁 ≥ 𝑁

such that |𝑧𝑛𝑁 − 𝑧 | > 𝜀. Up to removing possible multiple (but finite) appearances of the
𝑛𝑁 ’s, is clear from this construction that no subsequence of (𝑧𝑛𝑁 )𝑁 ∈N converges to 𝑧.

One cannot replace the second condition by the claimed statement. This is easily seen by
considering an alternating sequence which does not converge at all.

b. We first prove ( 𝑓𝑛)𝑛∈N converges pointwise to a function 𝑓 to be constructed. As
seen in the proof of Vitali’s theorem from the lecture, the nonconvergence of ( 𝑓𝑛)𝑛∈N at
a point 𝑧′ ∈ 𝐷 implies the existence of two holomorphic functions ℎ, 𝑔 : 𝐷 → C and two
subsequences ( 𝑓𝑛𝑘,1 )𝑘∈N and ( 𝑓𝑛𝑘,2 )𝑘∈N such that

• 𝑓𝑛𝑘,1 → ℎ and 𝑓𝑛𝑘,2 → 𝑔 locally uniformly as 𝑘 → ∞ and
• ℎ(𝑧′) ≠ 𝑔(𝑧′).

Applying Theorem 1.5 from the lecture notes, we infer for every 𝑚 ∈ N that all derivatives
of the two subsequences converge locally uniformly to the corresponding derivatives of
ℎ and 𝑔, respectively. Thus by analyticity of ℎ and 𝑔, the set {ℎ = 𝑔} is non-empty and
contains a small ball 𝐵𝑟 (𝑧0). By the identity theorem we conclude ℎ = 𝑔, a contradiction.

We then define 𝑓 : 𝐷 → C in the evident way, i.e. 𝑓 (𝑧) is the limit of the sequence
( 𝑓𝑛 (𝑧))𝑛∈N whose convergence we have just shown, where 𝑧 ∈ 𝐷.

It remains to show ( 𝑓𝑛)𝑛∈N converges locally uniformly to 𝑓 . By Remark 1.2 from the
lecture notes, this is equivalent to showing that for every compact subset 𝐾 ⊂ 𝐷,

lim
𝑛→∞

sup
𝑧∈𝐾

| 𝑓𝑛 (𝑧) − 𝑓 (𝑧) | = 0. (2.1)
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1This statement may look odd at first glance. It appears to make a simple statement about convergence more

complicated. However, as you will hopefully acknowledge in solving b. (and in later courses), its usefulness
throughout analysis comes in fact from the backward implication. In applications, one usually cannot show the
convergence of an entire sequence directly, but compactness often allows one to extract subsequences one can
handle better.

2Hint. Establish pointwise convergence first.
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Let such a 𝐾 be fixed. Consider an arbitrary subsequence ( 𝑓𝑛𝑘 )𝑘∈N. By Montel’s theorem,
a further subsequence ( 𝑓𝑛𝑘 𝑗 ) 𝑗∈N converges locally uniformly to a holomorphic function
𝑔 : 𝐷 → C. On the other hand, the extracted subsubsequence converges pointwise to 𝑓 ,
which forces 𝑔 = 𝑓 — in particular, 𝑓 is holomorphic. The locally uniform convergence
previously observed implies lim 𝑗→∞ 𝑎𝑛𝑘 𝑗 = 0, where

𝑎𝑛 := sup
𝑧∈𝐾

| 𝑓𝑛 (𝑧) − 𝑓 (𝑧) |.

In other words, we have just shown every subsequence of (𝑎𝑛)𝑛∈N contains a further sub-
sequence converging to zero. By a., this implies 𝑎𝑛 → 0 as 𝑛→ ∞, which is (2.1).

Homework 2.2 (A compactness criterion). Let 𝐵1 (0) ⊂ C denote the open unit disk. Define
the family of functions

F =

{
𝑓 : 𝐵1 (0) → C : 𝑓 holomorphic, 𝑓 (𝑧) =

∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 for every 𝑧 ∈ 𝐵1 (0),

|𝑎𝑘 | ≤ 1 for every 𝑘 ∈ N0

}
.

Let ( 𝑓𝑛)𝑛∈N be an arbitrary sequence in F.
a. Show ( 𝑓𝑛)𝑛∈N subconverges locally uniformly to a function 𝑓 : 𝐵1 (0) → C.
b. Show 𝑓 belongs to F.

Solution. a. Since |𝑎𝑘 | ≤ 1 for every 𝑘 ∈ N0, the triangle inequality yields

| 𝑓 (𝑧) | ≤
∞∑︁
𝑘=0

|𝑎𝑘 | |𝑧 |𝑘 ≤
∞∑︁
𝑘=0

|𝑧 |𝑘 = 1
1 − |𝑧 | (2.2)

for every 𝑓 ∈ F and every 𝑧 ∈ 𝐵1 (0). Given any compact set 𝐾 ⊂ 𝐵1 (0), by continuity the
function | · | assumes its maximum on 𝐾 . This maximum is clearly less than one. Combining
this with (2.2) shows ( 𝑓𝑛)𝑛∈N is locally uniformly bounded. Applying Montel’s theorem
yields the claim.

b. As 𝑓𝑛 is holomorphic for every 𝑛 ∈ N, Theorem 1.3 from the lecture notes implies 𝑓
is holomorphic. The claimed series representation holds for every holomorphic function on
𝐵1 (0), hence for 𝑓 . Thus it remains to show that the modulus of the coefficients in this series
representation are no larger than 1. Denote the coefficients of 𝑓𝑛 by 𝑎𝑛

𝑘
and the coefficients

of 𝑓 by 𝑎𝑘 . Then we have 𝑎𝑛
𝑘
= 𝑓

(𝑘 )
𝑛 (0)/𝑘! for every 𝑘 ∈ N0. From Theorem 1.5 in the

lecture notes, up to passing to an appropriate subsequence we deduce 𝑓 (𝑘 )𝑛 (0) → 𝑓 (𝑘 ) (0)
as 𝑛→ ∞. Continuity yields |𝑎𝑘 | = | 𝑓 (𝑘 ) (0) |/𝑘! ≤ 1/𝑘! ≤ 1, which proves the claim.

Homework 2.3 (An extremal problem in the proof of the Riemann mapping theorem∗). Let
𝐷 ⊊ C be a simply connected domain containing zero. Show there exists a holomorphic
function 𝑓 : 𝐷 → C which attains the supremum

𝑠0 := sup{| 𝑓 ′ (0) | : 𝑓 : 𝐷 → 𝐵1 (0), 𝑓 holomorphic and injective, 𝑓 (0) = 0}.

We consider a sequence ( 𝑓𝑛)𝑛∈N of functions 𝑓𝑛 : 𝐷 → 𝐵1 (0) which are admissible in the
previous supremum3 such that | 𝑓 ′𝑛 (0) | → 𝑠0 as 𝑛→ ∞.

a. Show ( 𝑓𝑛)𝑛∈N subconverges to a holomorphic function 𝑓 : 𝐷 → 𝐵1 (0).
b. Show 𝑠0 is a real number.
c. Show the above supremum is attained for the function 𝑓 from a. (in particular, 𝑓 is

admissible in the definition of 𝑠0).

3The nonemptiness of the class of functions satisfying the desired properties is indeed not obvious. You may
assume this fact as given without proof (which will be given later during the lecture, based on 𝐷 being simply
connected).
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Homework 2.4 (Locally normal vs. locally uniform convergence). Let ( 𝑓 𝑗 ) 𝑗∈N be a sequence
of functions 𝑓 𝑗 : 𝑈 → C, where 𝑈 ⊂ C is open. The series

∑∞
𝑗=1 𝑓 𝑗 will be called locally

normally convergent if for every 𝑧0 ∈ 𝑈 there exists 𝑟 > 0 such that
∞∑︁
𝑗=1

sup
𝑧∈𝐵𝑟 (𝑧0 )

| 𝑓 𝑗 (𝑧) | < ∞.

a. Show if
∑∞
𝑗=1 𝑓 𝑗 is locally normally convergent, then this series is locally uniformly

convergent.
b. Give an example of a sequence ( 𝑓 𝑗 ) 𝑗∈N of not necessarily holomorphic functions

𝑓 𝑗 : C → C which shows the converse of a. is in general false.

Solution. a. Local normal convergence implies in particular the series
∑∞
𝑗=1 𝑓 𝑗 (𝑧) exists in

C for every 𝑧 ∈ 𝑈. Now fix 𝑧0 ∈ 𝑈 and let 𝑟 > 0 be given by the definition of local normal
convergence. Then for any 𝑧 ∈ 𝐵𝑟 (𝑧0), the triangle inequality implies

sup
𝑧∈𝐵𝑟 (𝑧0 )

��� ∞∑︁
𝑗=1

𝑓 𝑗 (𝑧) −
𝑛∑︁
𝑗=1

𝑓 𝑗 (𝑧)
��� ≤ sup

𝑧∈𝐵𝑟 (𝑧0 )

∞∑︁
𝑗=𝑛+1

| 𝑓 𝑗 (𝑧) | ≤
∞∑︁

𝑗=𝑛+1
sup

𝑧∈𝐵𝑟 (𝑧0 )
| 𝑓 𝑗 (𝑧) |.

By summability, the right hand side of the above inequality converges to zero as 𝑛 → ∞.
This proves the claim.

b) In the above proof there are two estimates which are not sharp; we employ these to
produce a counterexample. While the first was about the triangle inequality, the second
interchanged sum and suprema. We exploit the first and consider sign-changing functions.
For 𝑗 ∈ N define 𝑓 𝑗 : C → C by 𝑓 𝑗 (𝑧) := (−1) 𝑗+1e𝑧/ 𝑗 . Since the alternating harmonic
series converges to log 2 and the exponential function is bounded on every compact set
𝐾 ⊂ C, we see for every 𝑧0 ∈ C that

limsup
𝑛→∞

sup
𝑧∈𝐵1 (𝑧0 )

��� log 2 e𝑧 −
𝑛∑︁
𝑗=1

(−1) 𝑗+1

𝑗
e𝑧
��� ≤ limsup

𝑛→∞
e |𝑧0 |+1

��� log 2 −
𝑛∑︁
𝑗=1

(−1) 𝑗+1

𝑗

��� = 0.

Hence the sequence (𝑆𝑛)𝑛∈N of partial sums 𝑆𝑛 =
∑𝑛
𝑗=1 𝑓 𝑗 converges locally uniformly to

the function 𝑔 : C → C defined through 𝑔(𝑧) := log 2 e𝑧 .
On the other hand, for 𝑧0 = 0 we obtain for every 𝑟 > 0 that

∞∑︁
𝑗=1

sup
𝑧∈𝐵𝑟 (0)

| 𝑓 𝑗 (𝑧) | ≥
∞∑︁
𝑗=1

1
𝑗
= ∞,

which shows the series
∑∞
𝑗=1 𝑓 𝑗 is not locally normally convergent.


