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Homework 2.1 (A convergence criterion). Let D C C be a domain and let (f;),eN be a
locally uniformly bounded sequence of holomorphic functions f,,: D — C. Assume there
exists zo € D such that for every k € Ny, the following limit exists:

Tlim £ (z0).

a. With elementary methods from analysis, show the following “lemma”. Let (z,)neN
be a sequence in C and let z € C. Then (z,),en converges to z if and only if every
subsequence of (z,)neN has a further subsequence which converges to z!. Can one
replace the second condition by “(z,)»eN has a subsequence converging to z”?

b. Use a. to show (f,,),en converges locally uniformly to some function f: D — C2.

Solution. a. It is clear that if (z,),en converges to z, then every subsequence (of every
subsequence) of (z,)neN converges to z.

Conversely, assume (z,),eN does not converge to z. Then (by reversing the definition of
convergence logically) there exists € > 0 such that for every N € N there exists ny > N
such that |z,,, — z| > £. Up to removing possible multiple (but finite) appearances of the
nn'’s, is clear from this construction that no subsequence of (z,,, ) N eN converges to z.

One cannot replace the second condition by the claimed statement. This is easily seen by
considering an alternating sequence which does not converge at all.

b. We first prove ( f;;)nen converges pointwise to a function f to be constructed. As
seen in the proof of Vitali’s theorem from the lecture, the nonconvergence of (f;,),en at
a point 7 € D implies the existence of two holomorphic functions 4, g: D — C and two
subsequences ( f;, ,)xen and (f, ,)keN such that

® fur, — hand f, , — g locally uniformly as k — oo and
o h(z') # g(2).
Applying Theorem 1.5 from the lecture notes, we infer for every m € N that all derivatives
of the two subsequences converge locally uniformly to the corresponding derivatives of
h and g, respectively. Thus by analyticity of & and g, the set {h = g} is non-empty and
contains a small ball B, (zg). By the identity theorem we conclude / = g, a contradiction.
We then define f: D — C in the evident way, i.e. f(z) is the limit of the sequence
(f2(2))nen Whose convergence we have just shown, where z € D.
It remains to show ( f;,),en converges locally uniformly to f. By Remark 1.2 from the
lecture notes, this is equivalent to showing that for every compact subset K C D,

Jim sup£,(2) = /(2)| = 0. e

Date: September 30, 2024.

IThis statement may look odd at first glance. It appears to make a simple statement about convergence more
complicated. However, as you will hopefully acknowledge in solving b. (and in later courses), its usefulness
throughout analysis comes in fact from the backward implication. In applications, one usually cannot show the
convergence of an entire sequence directly, but compactness often allows one to extract subsequences one can
handle better.

Hint. Establish pointwise convergence first.
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Let such a K be fixed. Consider an arbitrary subsequence ( fy,, )xeN. By Montel’s theorem,
a further subsequence ( fnkj )jeN converges locally uniformly to a holomorphic function
g: D — C. On the other hand, the extracted subsubsequence converges pointwise to f,
which forces g = f — in particular, f is holomorphic. The locally uniform convergence
previously observed implies lim;_, any, = 0, where

an == sup | fu(z) = f(2)].
zeK

In other words, we have just shown every subsequence of (a,),eN contains a further sub-
sequence converging to zero. By a., this implies a,, — 0 as n — co, which is (2.1).

Homework 2.2 (A compactness criterion). Let B;(0) c C denote the open unit disk. Define
the family of functions

o)

F= {f: B1(0) — C : f holomorphic, f(z) = Zakzk for every z € B1(0),
k=0

lax| < 1 for every k € No}.

Let (fu)nen be an arbitrary sequence in .

a. Show (fy,)neN subconverges locally uniformly to a function f: B(0) — C.
b. Show f belongs to F.

Solution. a. Since |ax| < 1 for every k € Ny, the triangle inequality yields

1f(2)] < Z Jaxllzl* < Z 2l = |Z| (2.2)

for every f € J and every z € B;(0). Given any compact set K C B;(0), by continuity the
function | - | assumes its maximum on K. This maximum is clearly less than one. Combining
this with (2.2) shows ( f;;)nen is locally uniformly bounded. Applying Montel’s theorem
yields the claim.

b. As f, is holomorphic for every n € N, Theorem 1.3 from the lecture notes implies f
is holomorphic. The claimed series representation holds for every holomorphic function on
B1(0), hence for f. Thus it remains to show that the modulus of the coefficients in this series
representation are no larger than 1. Denote the coeficients of f, by a} and the coefficients
of f by ay. Then we have aj fn(k) (0)/k! for every k € Np. From Theorem 1.5 in the
lecture notes, up to passing to an appropriate subsequence we deduce fn )(0) — £K(0)
as n — oo. Continuity yields |ax| = | f*)(0)|/k! < 1/k! < 1, which proves the claim.

Homework 2.3 (An extremal problem in the proof of the Riemann mapping theorem®). Let
D ¢ C be a simply connected domain containing zero. Show there exists a holomorphic
function f: D — C which attains the supremum

so = sup{|f’(0)| : f: D — B1(0), f holomorphic and injective, f(0) = 0}.

We consider a sequence (fy,)nen of functions f;,: D — B;(0) which are admissible in the
previous supremum?® such that | fi(0)] — sp as n — co.

a. Show (fy,)neN subconverges to a holomorphic function f: D — By(0).

b. Show s¢ is a real number.

c. Show the above supremum is attained for the function f from a. (in particular, f is
admissible in the definition of sg).

3The nonemptiness of the class of functions satisfying the desired properties is indeed not obvious. You may
assume this fact as given without proof (which will be given later during the lecture, based on D being simply
connected).
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Homework 2.4 (Locally normal vs. locally uniform convergence). Let (f;);en be a sequence
of functions f;: U — C, where U C C is open. The series Z;‘;l f; will be called locally
normally convergent if for every zo € U there exists r > 0 such that
sup15(2)] < oo.
j:1 Z€B, (ZO)
a. Show if Z;’;] f; is locally normally convergent, then this series is locally uniformly
convergent.
b. Give an example of a sequence (f;) en of not necessarily holomorphic functions
fj: € — C which shows the converse of a. is in general false.

Solution. a. Local normal convergence implies in particular the series Z;’-‘;l fj(2) exists in
C for every z € U. Now fix zg € U and let r > 0 be given by the definition of local normal
convergence. Then for any z € B, (zg), the triangle inequality implies

0o 00

n o

sip Y@= H@)s s Y@< Y s 1f@I
z€Br(20) 75 j=1 2€Br(20) jop41 j=n+12€Br(z0)

By summability, the right hand side of the above inequality converges to zero as n — oo.

This proves the claim.

b) In the above proof there are two estimates which are not sharp; we employ these to
produce a counterexample. While the first was about the triangle inequality, the second
interchanged sum and suprema. We exploit the first and consider sign-changing functions.
For j € N define f;: C — C by f;(z) := (-1)/*'e?/j. Since the alternating harmonic
series converges to log 2 and the exponential function is bounded on every compact set
K c C, we see for every zg € C that

n (_1)j+1 n (_1)j+1
limsup sup ‘logZeZ —Z ~—— &% < limsupel®/*! logZ—Z

n—e zeB(zo) j=1 J n—00 j=1

Hence the sequence (S,),en of partial sums S, = Z;le fj converges locally uniformly to
the function g: C — C defined through g(z) := log2e*®.
On the other hand, for zg = 0 we obtain for every r > 0 that

0o

S s @Iz Y e,
=g

j=1 z€B;(0)

which shows the series Z;"z 1 /5 1s not locally normally convergent.



